
Research Article
Performance Evaluation and Parametric Optimization of Coal-
Fired Water Tube Boiler Using the Grey-Taguchi Method

Irsa Talib ,1 Muzammil Yasin ,1 Jawad Hussain ,2 and Raphael Uwamahoro 3

1Mechanical Engineering Department, University of Management and Technology, Lahore, Punjab, Pakistan
2Department of Biomedical Engineering, Riphah International University, Lahore, Punjab, Pakistan
3Regional Centre of Excellence in Biomedical Engineering and E-Health, University of Rwanda, Rwanda

Correspondence should be addressed to Raphael Uwamahoro; raphael.engr@gmail.com

Received 24 February 2023; Revised 27 July 2023; Accepted 22 August 2023; Published 13 September 2023

Academic Editor: Sunday Olayinka Oyedepo

Copyright © 2023 Irsa Talib et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Industries, district heating companies, and public institutions that use boilers for heating, processing, or power production find it
challenging to run at peak efficiencies due to rising fuel prices. Insufficient heat energy production and distribution through boilers
contribute to an overall increase in energy expenditure. The performance of a boiler is affected by various controlling parameters,
including specific fuel consumption capacity, load, and heat losses. The current study was conducted to evaluate the performance
of the coal-fired water tube boiler at D.G. Khan Cement Company Limited, Pakistan. The experimental results were validated with
artificial neural network- (ANN-) based predictions, which were observed to have an error of 14% in the regression plot. In this
study, the performance parameters of the boiler, including steam temperature (ST), steam pressure (SP), and specific steam flow
rate (SSFR), were optimized against fuel consumption (FC) and load using the Grey-Taguchi method. The best-performing
parameters, with the best criteria, were observed at an overall grey relational grade (OGRG) of 0.891 and a load of 66%. The
findings indicated that the overall performance of the boiler was optimized with an FC of 3.09 kg/s, a load of 66%, ST of
532°C, SP of 9.93MPa, and SSFR of 21.38 kg/s.

1. Introduction

In the late 1700s and early 1800s, the kettle-type boiler,
which simply boiled water into steam, paved the way for
the steam-generating boiler [1]. By placing the water above
a firebox, it was converted into steam. The steam-
generating industry did not begin until the convection boiler
was invented in 1867 [2]. Although it is uncertain who
invented the first steam-generating boiler, George Babcock
and Steven Wilcox are widely recognized as two founders
of the boiler. In 1867, they were the first to patent their
boiler design, which created steam through tubes within a
firebrick building. In 1891, they founded Babcock & Wilcox
Company in New York City [3]. Initially, small-sized boilers
were produced. These boilers were manually fired with lump
coal to generate steam. The unit’s robust firebrick walls were
essential to expedite the combustion process by reradiating
heat back into the furnace.

The Stirling boiler was founded by O.C. Barber in 1891
[4]. The H-type Stirling boiler featured a brick setting pat-
tern [5]. Unlike Babcock & Wilcox’s boiler, the Stirling
boiler was much bigger, with three drums to aid in the circu-
lation of water and steam [6]. It remained the most popular
boiler for steam generation until the late 1800s [7]. High-
quality Stoker boilers, with complete brick walls, used
screw-type structures to feed the fuel [8], resulting in homo-
geneous circulation of heat throughout the boiler. The E-
stoker boiler, developed in 1912 through a merger of two
American companies, marked a significant engineering
advancement.

There are three modes of heat transfer in a boiler,
including conduction, convection, and radiation [9]. The
heat loss occurring through these three modes might cause
a decrease in the boiler’s efficiency [10]. Boilers can be
broadly categorized into two main types based on their
design: fire tube boilers and water tube boilers [11].
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Additionally, boilers can be further classified according to
their fuel consumption, such as coal fuel-fired boilers, gas-
fired boilers, electric boilers, and nuclear-fired boilers.
Among these, gas-fired boilers are known for their cost-
effectiveness and higher efficiency compared to other types
of boilers [12]. Despite the advantages of gas-fired boilers,

running any boiler at peak efficiency can be challenging for
industries and heating companies, especially considering
the constant rise in fuel prices [13]. The insufficient heat
energy production and distribution lead to an increase in
energy production cost. To address this issue effectively, it
is essential to evaluate the current infrastructure and identify

Table 1: Input and output parameters.

Sr. no.
Input Output

FC (kg/s) Load (%) ST (°C) SP (MPa) SSFR (kg/s)

1 1.44 33.00 545.00 10.01 17.52

2 1.49 34.00 544.00 9.89 26.38

3 1.54 35.00 543.00 9.92 22.71

4 1.59 36.00 542.00 10.06 22.22

5 1.64 37.00 556.00 10.15 19.72

6 1.69 38.00 547.00 10.03 20.27

7 1.74 39.00 548.00 10.15 20.27

8 1.79 40.00 553.00 9.98 27.71

9 1.84 41.00 542.00 10.25 25.27

10 1.89 42.00 544.00 10.23 19.71

11 1.94 43.00 544.00 10.02 17.22

12 1.99 44.00 555.00 10.03 21.38

13 2.04 45.00 553.00 10.01 20.83

14 2.09 46.00 536.00 9.99 21.11

15 2.14 47.00 546.00 10.19 27.70

16 2.19 48.00 535.00 9.92 18.81

17 2.24 49.00 543.00 10.03 21.38

18 2.29 50.00 537.00 9.79 16.11

19 2.34 51.00 539.00 10.05 23.88

20 2.39 52.00 543.00 10.29 18.33

21 2.44 53.00 542.00 10.01 20.83

22 2.49 54.00 542.00 10.02 28.05

23 2.54 55.00 534.00 10.11 22.71

24 2.59 56.00 544.00 10.04 21.66

25 2.64 57.00 540.00 9.91 21.94

26 2.69 58.00 543.00 10.12 21.66

27 2.74 59.00 544.00 10.26 20.27

28 2.99 64.00 542.00 10.06 22.77

29 3.04 65.00 552.00 10.31 26.11

30 3.09 66.00 532.00 9.93 21.38

31 3.14 67.00 541.00 9.98 20.83

32 3.19 68.00 537.00 10.05 19.16

33 3.24 69.00 537.00 9.93 19.72

34 3.29 70.00 538.00 9.86 13.61

35 3.34 71.00 539.00 9.86 20.55

36 3.39 72.00 531.00 9.84 26.66

37 3.44 73.00 537.00 10.04 19.44

38 3.49 74.00 551.00 9.93 20.11

39 3.54 75.00 543.00 10.07 19.44

40 3.59 76.00 538.00 9.69 20.01

41 3.64 77.00 537.00 9.87 13.72

42 3.69 79.00 538.00 9.90 20.83
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areas for improvement. Therefore, conducting an analysis of
boiler efficiency becomes crucial, as it significantly contrib-
utes to increasing energy generation and lowering produc-
tion cost [14].

Moreover, understanding the impact of accurate model-
ling and simulation of power plant components allows for

informed decision-making in areas such as training, strategic
planning, maintenance, techno-economic choices, and
ongoing plant operation monitoring [15]. For these reasons,
both boiler efficiency analysis and precise modeling are
essential for optimizing power plant performance and cost-
effectiveness. The demand for user-friendly modeling and

Table 2: Validation of experimental vs. predicted results.

Sr. no. ST Exp (°C) ST pred (°C) SP Exp (MPa) SP Pred (MPa)
SSFR SSFR

Exp (kg/s) Pred (kg/s)

1 0.9820 0.9835 0.9730 0.9723 0.6240 0.6488

2 0.9800 0.9845 0.9610 0.9774 0.9400 0.7947

3 0.9780 0.9851 0.9640 0.9798 0.8090 0.8468

4 0.9770 0.9855 0.9780 0.9807 0.7920 0.8538

5 1.0020 0.9858 0.9860 0.9810 0.7030 0.8455

6 0.9860 0.9860 0.9750 0.9812 0.7230 0.8309

7 0.9870 0.9860 0.9860 0.9811 0.7230 0.8160

8 0.9960 0.9860 0.9700 0.9810 0.9880 0.8014

9 0.9770 0.9858 0.9960 0.9807 0.9010 0.7865

10 0.9800 0.9854 0.9940 0.9803 0.7020 0.7737

11 0.9800 0.9848 0.9730 0.9797 0.6130 0.7618

12 1.0000 0.9839 0.9730 0.9788 0.7620 0.7500

13 0.9960 0.9828 0.9720 0.9778 0.7430 0.7400

14 0.9660 0.9813 0.9710 0.9765 0.7530 0.7311

15 0.9840 0.9794 0.9900 0.9749 0.9880 0.7231

16 0.9640 0.9774 0.9640 0.9735 0.6700 0.7177

17 0.9780 0.9756 0.9750 0.9724 0.7620 0.7154

18 0.9680 0.9743 0.9510 0.9724 0.5740 0.7180

19 0.9710 0.9741 0.9770 0.9738 0.8510 0.7262

20 0.9780 0.9749 1.0000 0.9765 0.6530 0.7393

21 0.9770 0.9762 0.9720 0.9799 0.7430 0.7552

22 0.9770 0.9770 0.9740 0.9824 1.0000 0.7675

23 0.9620 0.9770 0.9830 0.9837 0.8090 0.7754

24 0.9800 0.9763 0.9720 0.9840 0.7720 0.7792

25 0.9730 0.9753 0.9630 0.9835 0.7820 0.7799

26 0.9780 0.9743 0.9830 0.9828 0.7720 0.7790

27 0.9800 0.9733 0.9970 0.9821 0.7230 0.7775

28 0.9770 0.9704 0.9720 0.9791 0.8120 0.7756

29 0.9950 0.9700 1.0010 0.9783 0.9310 0.7772

30 0.9590 0.9695 0.9650 0.9771 0.7620 0.7766

31 0.9750 0.9689 0.9700 0.9752 0.7430 0.7670

32 0.9680 0.9682 0.9770 0.9716 0.6830 0.7264

33 0.9680 0.9677 0.9620 0.9664 0.7020 0.6333

34 0.9690 0.9680 0.9580 0.9608 0.4850 0.5314

35 0.9710 0.9695 0.9580 0.9606 0.7330 0.7187

36 0.9570 0.9724 0.9560 0.9659 0.9500 0.9463

37 0.9680 0.9755 0.9760 0.9680 0.6930 0.8418

38 0.9930 0.9763 0.9650 0.9658 0.7130 0.7197

39 0.9780 0.9755 0.9790 0.9624 0.6930 0.6881

40 0.9690 0.9743 0.9420 0.9593 0.7130 0.6948

41 0.9680 0.9732 0.9590 0.9569 0.4890 0.7122

42 0.9690 0.9722 0.9620 0.9547 0.7430 0.7346
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monitoring tools has multiplied in the last decade due to
environmental concerns and deregulation of energy [16].
An example of such user-friendly modeling and monitoring
tools is the online plant monitoring system. It continuously
collects a significant amount of operational data from exist-
ing facilities to ensure appropriate operations [17]. This data

is often stored only in databases and can be used to build
ANN models that simulate plant operations. Many
researchers have investigated the ANN modeling of various
energy systems [18].

The use of ANN-based prediction has been explored in a
few past studies [4, 5, 11, 16], to assess the performance

Table 3: Taguchi-based normalization.

Sr. no
Input Outputs

FC (kg/s) Load (%) ST (°C) SP (MPa) SSFR (kg/s)

1 1.440 33.000 0.561 0.767 0.276

2 1.490 34.000 0.520 0.567 0.906

3 1.540 35.000 0.480 0.767 0.645

4 1.590 36.000 0.441 0.483 0.611

5 1.640 37.000 1.000 0.933 0.434

6 1.690 38.000 0.640 0.900 0.473

7 1.740 39.000 0.681 0.533 0.473

8 1.790 40.000 0.883 0.533 1.001

9 1.840 41.000 0.441 0.517 0.828

10 1.890 42.000 0.520 0.500 0.432

11 1.940 43.000 0.520 0.833 0.255

12 1.990 44.000 0.961 0.383 0.551

13 2.040 45.000 0.883 0.567 0.512

14 2.090 46.000 0.201 0.167 0.532

15 2.140 47.000 0.600 0.600 1.002

16 2.190 48.000 0.160 1.000 0.368

17 2.240 49.000 0.481 0.517 0.551

18 2.290 50.000 0.241 0.550 0.177

19 2.340 51.000 0.320 0.700 0.729

20 2.390 52.000 0.481 0.517 0.335

21 2.440 53.000 0.440 0.367 0.512

22 2.490 54.000 0.441 0.717 1.025

23 2.540 55.000 0.120 0.950 0.645

24 2.590 56.000 0.521 0.517 0.571

25 2.640 57.000 0.361 1.017 0.591

26 2.690 58.000 0.484 0.400 0.571

27 2.740 59.000 0.521 0.483 0.473

28 2.990 64.000 0.440 0.600 0.650

29 3.040 65.000 0.842 0.350 0.887

30 3.090 66.000 0.045 0.283 0.551

31 3.140 67.000 0.421 0.283 0.512

32 3.190 68.000 0.244 0.250 0.394

33 3.240 69.000 0.240 0.583 0.432

34 3.290 70.000 0.281 0.400 0.000

35 3.340 71.000 0.321 0.633 0.493

36 3.390 72.000 0.000 0.000 0.926

37 3.440 73.000 0.242 0.300 0.414

38 3.490 74.000 0.821 0.350 0.454

39 3.540 75.000 0.483 0.153 0.414

40 3.590 76.000 0.281 0.267 0.454

41 3.640 77.000 0.241 0.764 0.008

42 3.690 79.000 0.284 0.345 0.512

Table 4: Taguchi quality loss function.

Sr. no
Input Outputs

FC (kg/s) Load (%) ST (°C) SP (MPa) SSFR (kg/s)

1 1.440 33.000 0.440 0.250 0.749

2 1.490 34.000 0.480 0.450 0.119

3 1.540 35.000 0.520 0.250 0.381

4 1.590 36.000 0.560 0.533 0.414

5 1.640 37.000 0.030 0.083 0.591

6 1.690 38.000 0.360 0.117 0.542

7 1.740 39.000 0.320 0.483 0.552

8 1.790 40.000 0.120 0.483 0.025

9 1.840 41.000 0.560 0.500 0.197

10 1.890 42.000 0.480 0.517 0.593

11 1.940 43.000 0.480 0.183 0.772

12 1.990 44.000 0.040 0.633 0.474

13 2.040 45.000 0.120 0.450 0.513

14 2.090 46.000 0.800 0.850 0.493

15 2.140 47.000 0.410 0.417 0.025

16 2.190 48.000 0.840 0.017 0.657

17 2.240 49.000 0.520 0.500 0.474

18 2.290 50.000 0.760 0.467 0.848

19 2.340 51.000 0.680 0.317 0.296

20 2.390 52.000 0.520 0.500 0.691

21 2.440 53.000 0.560 0.650 0.513

22 2.490 54.000 0.560 0.300 0.001

23 2.540 55.000 0.880 0.067 0.385

24 2.590 56.000 0.480 0.500 0.454

25 2.640 57.000 0.640 0.000 0.434

26 2.690 58.000 0.520 0.617 0.454

27 2.740 59.000 0.480 0.533 0.552

28 2.990 64.000 0.560 0.417 0.375

29 3.040 65.000 0.160 0.667 0.138

30 3.090 66.000 0.960 0.733 0.474

31 3.140 67.000 0.600 0.733 0.513

32 3.190 68.000 0.760 0.767 0.631

33 3.240 69.000 0.760 0.433 0.593

34 3.290 70.000 0.720 0.617 1.025

35 3.340 71.000 0.680 0.383 0.532

36 3.390 72.000 1.010 1.017 0.099

37 3.440 73.000 0.760 0.717 0.611

38 3.490 74.000 0.200 0.667 0.571

39 3.540 75.000 0.520 0.167 0.611

40 3.590 76.000 0.720 0.185 0.571

41 3.640 77.000 0.760 0.187 1.017

42 3.690 79.000 0.720 0.197 0.513

4 International Journal of Energy Research



parameters of boilers. However, none of these studies has yet
optimized the results of boiler performance. The optimiza-
tion of ANN-predicted boiler performance parameters using
GTM remains an unexplored area. The performance of coal-
fired boilers widely varies with specific fuel consumption,
load, steam temperature, steam pressure, and specific steam

flow rate. Optimizing the input and output parameters of the
boiler using the Gray Taguchi Method (GTM) could prove
to be cost-effective by supporting the economical operation
of water tube boilers [19].

The aim of this study is to optimize boiler performance
using GTM and validate the experimental results with

Table 5: Overall grey relational grade.

Sr. no
Input Outputs

ORG
FC (kg/s) Load (%) ST (°C) SP (MPa) SSFR (kg/s)

1 1.440 33.000 0.532 0.630 0.738 0.604

2 1.490 34.000 0.510 0.486 0.845 0.608

3 1.540 35.000 0.490 0.630 0.738 0.603

4 1.590 36.000 0.472 0.443 0.883 0.104

5 1.640 37.000 1.000 0.836 0.624 0.324

6 1.690 38.000 0.581 0.785 0.649 0.567

7 1.740 39.000 0.610 0.468 0.861 0.435

8 1.790 40.000 0.806 0.468 0.861 0.507

9 1.840 41.000 0.472 0.459 0.869 0.843

10 1.890 42.000 0.510 0.451 0.876 0.341

11 1.940 43.000 0.510 0.699 0.695 0.645

12 1.990 44.000 0.926 0.402 0.924 0.321

13 2.040 45.000 0.806 0.486 0.845 0.000

14 2.090 46.000 0.385 0.333 1.000 0.312

15 2.140 47.000 0.556 0.505 0.829 0.346

16 2.190 48.000 0.373 0.962 0.570 0.721

17 2.240 49.000 0.490 0.459 0.869 0.672

18 2.290 50.000 0.397 0.477 0.853 0.702

19 2.340 51.000 0.424 0.573 0.777 0.603

20 2.390 52.000 0.490 0.459 0.869 0.342

21 2.440 53.000 0.472 0.395 0.931 0.532

22 2.490 54.000 0.472 0.586 0.767 0.432

23 2.540 55.000 0.362 0.864 0.611 0.654

24 2.590 56.000 0.510 0.459 0.869 0.345

25 2.640 57.000 0.439 1.000 0.556 0.245

26 2.690 58.000 0.490 0.408 0.918 0.145

27 2.740 59.000 0.510 0.443 0.883 0.801

28 2.990 64.000 0.472 0.505 0.829 0.657

29 3.040 65.000 0.758 0.389 0.937 0.835

30 3.090 66.000 0.342 0.367 0.961 0.891

31 3.140 67.000 0.455 0.367 0.961 0.654

32 3.190 68.000 0.397 0.357 0.973 0.576

33 3.240 69.000 0.397 0.495 0.837 0.456

34 3.290 70.000 0.410 0.408 0.918 0.345

35 3.340 71.000 0.424 0.526 0.812 0.765

36 3.390 72.000 0.333 0.295 1.048 0.754

37 3.440 73.000 0.397 0.372 0.955 0.675

38 3.490 74.000 0.714 0.389 0.937 0.752

39 3.540 75.000 0.490 0.718 0.684 0.753

40 3.590 76.000 0.410 0.697 0.696 0.654

41 3.640 77.000 0.397 0.694 0.698 0.632

42 3.69 79.00 0.410 0.683 0.704 0.765
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ANN-predicted results under various loading conditions for
the coal-fired boiler located at D.G. Khan Cement Company
Limited, Pakistan.

2. Methods

The study was conducted to evaluate the performance of
D.G. Khan Cement Company Limited’s coal-fired boiler
with a capacity of 30MW. The input parameters included
load and fuel consumption (FC), while the output parame-
ters included steam temperature (ST), steam pressure (SP),

and specific steam flow rate (SSFR). The set of experimental
targets was normalized using Grey Relational Generation
(GRG) with the “maximal the better” criteria for output
parameters [20]. The experimental and GTM optimized
results were then compared to the ANN projected results
for validation. The input and output data used in the train-
ing of ANN and optimization using GTM are given in
Table 1, while the experimental versus predicted values are
mentioned in Table 2.

A total of forty-two samples were physically collected
from D.G. Khan Cement Company Limited. After the
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collection of experimental data, it was normalized to make
the results comparable to other studies [21]. In the current
experimental analysis, ANN and GRG were used to study
the output and performance responses, such as ST, SP, and
SSFR, using the “larger the better” criteria. The coal-fired
boiler performed very well under these conditions [17, 22].

Xi = Yi K −MinYi K
MaxYi K −minYi K , 1

Y i = MaxYi K − Yi K
MaxYi K −minYi K , 2

where Xi k and Yi k are the gray relation-generation values
in equations (1) and (2), min Yi k represents the smallest
Yi k value for the kth response, and max Yi k represents
the largest Yi k value for the kth response. The gray partner-
ship generation sequences are shown in Tables 3–5. The opti-
mal sequence for SP, ST, and SSFR is x0 k k = 1, 2,⋯⋯ , 7
[23]. The grey relational grade description in the grey rela-
tional analysis demonstrates how the seven sequences (x0 k
and xi k , if = 1, 2) are related to the grade, 7, k = 1, 2, 7 [24].

∇om = X∗ − Xm X,m = 1, 2, 3⋯ x , 3

where ∇om is Taguchi quality loss function, Xm represents the
individual comparable data series fromTable 4,X∗ is the max-
imum value of the data series taken as 1, and x is the number
of experiments [25]. The corresponding results of Taguchi

quality loss functions for comparable data series are presented
in Table 4 [26, 27].

Ψm = ∇min + ζ × ∇max
∇om + ζ × ∇max , 4

ϵ = 1
y

〠

m=1
y

βm ×Ψm
5

An average GRC for each response is determined by the
overall gray relation grade (OGRG). In equation (4), Ψm is
the grey relational coefficient, calculated by the model in equa-
tion (3) while keeping the value of coefficient ζ = 0, 1 as 0.5,
an average of the two limits [28].

3. Results

The fitting tool was used to train the ANN via defined inputs
and outputs for ANN prediction. The predicted results for a
trained ANN algorithm can be visualized in Table 2. The
results were predicted by the network using two input neu-
rons, three output neurons, and ten to thirty adjustable neu-
rons in the hidden layer (Figure 1). The deviation was 86%,
and it converged towards the experimental results in the val-
idation regression plot, showing deviations to both the neg-
ative and positive sides, as shown in Figure 2.

The bar chart in Figure 3 depicts the deviation of pre-
dicted output parameters from the experimental ones. The
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Figure 3: Convergence between experimental and predicted results of steam temperature (a), steam pressure (b), and specific steam flow rate (c).
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results predicted by the network, using two inputs and ten
neurons in the hidden layer, were found to converge towards
the experimental results by 86% in the validation regression
plot. These results exhibited convergence on both positive
and negative sides. In the training regression plot, the values
were accurate at 85%. To check the accuracy of training data

samples, 16 sample test data were separated, and it was
observed that 91% of the test results were accurate when
compared with experimental values. Overall, the R2 value
was observed to be 86% for the experimental and predicted
output parameters, with an error of more than 10%. The
GTM concluded the optimization results in three steps,

Table 6: Optimization of performance factor.

Sr. no.
Input Experimental results Predicted results

OGRG
Load (%) FC (kg/s) ST (°C) SP (MPa) SSFR (kg/s) ST (°C) SP (MPa) SSFR (kg/s)

1 33.0000 1.4400 0.9820 0.9730 0.6240 0.9835 0.9723 0.6488 0.6040

2 34.0000 1.4900 0.9800 0.9610 0.9400 0.9845 0.9774 0.7947 0.6080

3 35.0000 1.5400 0.9780 0.9640 0.8090 0.9851 0.9798 0.8468 0.6030

4 36.0000 1.5900 0.9770 0.9780 0.7920 0.9855 0.9807 0.8538 0.1040

5 37.0000 1.6400 1.0020 0.9860 0.7030 0.9858 0.9810 0.8455 0.3240

6 38.0000 1.6900 0.9860 0.9750 0.7230 0.9860 0.9812 0.8309 0.5670

7 39.0000 1.7400 0.9870 0.9860 0.7230 0.9860 0.9811 0.8160 0.4350

8 40.0000 1.7900 0.9960 0.9700 0.9880 0.9860 0.9810 0.8014 0.5070

9 41.0000 1.8400 0.9770 0.9960 0.9010 0.9858 0.9807 0.7865 0.8430

10 42.0000 1.8900 0.9800 0.9940 0.7020 0.9854 0.9803 0.7737 0.3410

11 43.0000 1.9400 0.9800 0.9730 0.6130 0.9848 0.9797 0.7618 0.6450

12 44.0000 1.9900 1.0000 0.9730 0.7620 0.9839 0.9788 0.7500 0.3210

13 45.0000 2.0400 0.9960 0.9720 0.7430 0.9828 0.9778 0.7400 0.4120

14 46.0000 2.0900 0.9660 0.9710 0.7530 0.9813 0.9765 0.7311 0.3120

15 47.0000 2.1400 0.9840 0.9900 0.9880 0.9794 0.9749 0.7231 0.3460

16 48.0000 2.1900 0.9640 0.9640 0.6700 0.9774 0.9735 0.7177 0.7210

17 49.0000 2.2400 0.9780 0.9750 0.7620 0.9756 0.9724 0.7154 0.6720

18 50.0000 2.2900 0.9680 0.9510 0.5740 0.9743 0.9724 0.7180 0.7020

19 51.0000 2.3400 0.9710 0.9770 0.8510 0.9741 0.9738 0.7262 0.6030

20 52.0000 2.3900 0.9780 1.0000 0.6530 0.9749 0.9765 0.7393 0.3420

21 53.0000 2.4400 0.9770 0.9720 0.7430 0.9762 0.9799 0.7552 0.5320

22 54.0000 2.4900 0.9770 0.9740 1.0000 0.9770 0.9824 0.7675 0.4320

23 55.0000 2.5400 0.9620 0.9830 0.8090 0.9770 0.9837 0.7754 0.6540

24 56.0000 2.5900 0.9800 0.9720 0.7720 0.9763 0.9840 0.7792 0.3450

25 57.0000 2.6400 0.9730 0.9630 0.7820 0.9753 0.9835 0.7799 0.2450

26 58.0000 2.6900 0.9780 0.9830 0.7720 0.9743 0.9828 0.7790 0.1450

27 59.0000 2.7400 0.9800 0.9970 0.7230 0.9733 0.9821 0.7775 0.8010

28 64.0000 2.9900 0.9770 0.9720 0.8120 0.9704 0.9791 0.7756 0.6570

29 65.0000 3.0400 0.9950 1.0010 0.9310 0.9700 0.9783 0.7772 0.8350

30 66.0000 3.0900 0.9590 0.9650 0.7620 0.9695 0.9771 0.7766 0.8910

31 67.0000 3.1400 0.9750 0.9700 0.7430 0.9689 0.9752 0.7670 0.6540

32 68.0000 3.1900 0.9680 0.9770 0.6830 0.9682 0.9716 0.7264 0.5760

33 69.0000 3.2400 0.9680 0.9620 0.7020 0.9677 0.9664 0.6333 0.4560

34 70.0000 3.2900 0.9690 0.9580 0.4850 0.9680 0.9608 0.5314 0.3450

35 71.0000 3.3400 0.9710 0.9580 0.7330 0.9695 0.9606 0.7187 0.7650

36 72.0000 3.3900 0.9570 0.9560 0.9500 0.9724 0.9659 0.9463 0.7540

37 73.0000 3.4400 0.9680 0.9760 0.6930 0.9755 0.9680 0.8418 0.6750

38 74.0000 3.4900 0.9930 0.9650 0.7130 0.9763 0.9658 0.7197 0.7520

39 75.0000 3.5400 0.9780 0.9790 0.6930 0.9755 0.9624 0.6881 0.7530

40 76.0000 3.5900 0.9690 0.9420 0.7130 0.9743 0.9593 0.6948 0.6540

41 77.0000 3.6400 0.9680 0.9590 0.4890 0.9732 0.9569 0.7122 0.6320

42 79.0000 3.6900 0.9690 0.9620 0.7430 0.9722 0.9547 0.7346 0.7650
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including Taguchi-based normalization, quality loss func-
tion, and overall grey relational grade.

The experimental and predicted results converged by
86% on both positive and negative sides, with an R value
of 0.86026. The experimental results were then normalized
using grey relational generation. The optimization of targets
with input factors was obtained using an overall grey rela-
tion grade with the “larger the better” criteria. The optimized
results through the overall grey relation grade, using the
Grey-Taguchi method, were observed at run number 30 with
a load of 66% and FC of 3.09 kg/s. The experimental outputs
at 66% load were 0.959°C, 0.965MPa, and 0.762 kg/s for ST,
SP, and SSFR, respectively. Meanwhile, the predicted out-
puts were observed to be 0.9695°C, 0.9771MPa, and
0.7766 kg/s for ST, SP, and SSFR, respectively, at an OGRG
of 0.891. The best-performing output parameters were
observed at an OGRG of 0.891, with an overall root mean
square error of 14%.

4. Discussion

In the current study, functional fitting neural networks con-
sisted of input, hidden, and output layers (Figure 1). There
were two input parameters, including load percentage and
specific FC. The second layer consisted of hidden neurons,
which were adjustable between ten and thirty. The output
layer consisted of three parameters: ST, SP, and SSFR. For
network optimization, the number of hidden neurons
depends on the number of input neurons, the number of
output neurons, and the number of training data [29]. Thus,
the choice of ten to thirty hidden neurons is justified in the
current study and yielded reliable results.

The current study observed an 86% accuracy in results
for boiler performance using ANN (Figure 2). In a study
conducted in the past, the authors measured boiler perfor-
mance using ANN and observed a 0.7% increase in efficiency
[18]. Another research study measured boiler characteristics
using ANN with the feed-back propagation algorithm and
obtained 99% accuracy in results [4]. Thus, the observation
of a 14% error in results in the current study is in agreement
with the observations from the literature.

Furthermore, output parameters were optimized for
experimental and ANN-predicted results using GTM, indi-
cating that the findings are realistic and have practical impli-
cations. However, this error might be attributed to the fact
that the data was collected from the hottest location in the
country, where temperature variation (10-15°C) between
morning and afternoon would be considerable, especially
in summer. Such a wide range of temperature variation
might affect the load and fuel consumption [30] of the plant,
which could be reflected in the experimental data. On the
other hand, the current ANN prediction did not consider
the temperature variation within a day, which could contrib-
ute to an error of 14%.

The experimental values were observed to converge
towards the predicted values of ST, SP, and SSFR, as shown
in Figures 3(a)–3(c), respectively. The error was observed to
be 1.08%, 1.23%, and 1.87% for ST, SP, and SSFR, respec-
tively. The difference between experimental and predicted

values indicated a deviation from the fitting line, which
might be positive or negative [31]. The current study
observed a higher number of negative residuals, which might
be due to the limitation in data size. The data collection was
restricted by the company due to scheduled maintenance
and approval issues. A larger data size might yield a smaller
value of the total residuals and reduce the overall error.

The GRG, which turns the original series of experimen-
tal data into comparable series, undergoes experimental data
normalization in GTM. Figure 3 shows the comparison and
validation of both experimental and ANN results at the best-
predicted combination of outputs at 66% load. The results
indicate that the overall performance of the boiler was opti-
mized at a FC of 3.09 kg/s, load of 66%, ST of 532°C, SP of
9.93MPa, and SSFR of 21.38 kg/s. The root mean square
error was observed to be 14%, which is closer to a realistic
setup.

The performance prediction and optimization process of
the experimental setup are given in Table 6. Both experi-
mental and ANN-predicted results were observed to be close
to each other with an optimal arrangement of inputs. This
suggests the suitability of the Grey-Taguchi technique for
obtaining an optimal combination of output parameters.
As a result, both the Grey-Taguchi approach and ANN were
observed to be suitable for the optimization of coal-fired
boiler parameters, providing the best possible combination
of outputs.

5. Conclusion

The aim of this study was to optimize the boiler perfor-
mance using GTM and validate the experimental results
with ANN-predicted results under various loading condi-
tions for a coal-fired boiler. The current study observed
an 86% accuracy in results for boiler performance. The
error of 14% might be attributed to the fact that the loca-
tion of the plant for data collection experiences significant
variations in temperature within the three shifts during 24
hours. As a result, the variation in ambient temperature
might influence the plant efficiency. The experimental
values were observed to converge towards the predicted
values of ST, SP, and SSFR. The observation of a higher
number of negative residuals in the current study could
be due to the limitation in data size. Using a larger data
size is suggested for future studies, as it may yield a
smaller value of the total residuals, reducing the overall
error and contributing to improved boiler performance.
ANN offers an excellent alternative method for predicting
boiler performance parameters. Thus, the current study
has implications for the replacement of expensive boiler
experiments with ANN. It also suggests the suitability of
the Grey-Taguchi technique for obtaining an optimal com-
bination of boiler performance parameters.
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